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Abstract

We outline an approach for simulating computing architectures applicable to extreme-scale
systems (thousands of processors) and to advanced, novel architectural configurations. We be-
lieve that simulation is the predictive tool of choice for evaluating the performance of such
systems. Our component-based design allows for the seamless assembly of architectures from
representations of workload, processor, network interface, switches, etc., with disparate resolu-
tions into an integrated simulation model. This accommodates different case studies that may
require different levels of fidelity in various parts of a system. Our initial prototype, comprising
low-fidelity models of workload and network, aims to model at least 4096 computational nodes
in a fat-tree network. It supports studies of simulation performance and scaling rather than the
properties of the simulated system themselves. Future work will allow more realistic simulation
and visualization of ASCI-like workloads on very large machines.

1 Motivation

The magnitude of the scientific computations targeted by the ASCI project requires as-yet un-
available computational power. To facilitate these computations ASCI plans to deploy massive
computing platforms, possibly consisting of tens of thousands of processors, capable of achieving
10-100 tera-ops. For various reasons the current approach to building a yet-larger supercomputer—
connecting commercially available SMPs with a network—may be reaching practical limits. In
response the DOE Advanced Architecture Initiative seeks to research alternative high-performance
computing architectures.

The path to better hardware design and lower development costs involves performance evalua-
tion, analysis, and modeling of parallel applications and architectures, and in particular predictive
capability. Performance studies are routinely used to select the best architecture or platform for
a given application, select the best algorithm for solving a particular problem, and to study scal-
ability with respect to problem and platform size. Evaluating and analyzing the performance is
challenging, primarily because of the large number of components making up such systems and the
complex interactions that occur between them.

The tools of the trade in performance modeling and analysis are typically categorized as al-
gorithmic/analytical analysis, statistical analysis, analysis with queuing theory, and simulation.
Depending on the problem one or more or these methods will be more appropriate than others. Al-
though significant results have been obtained in recent work for an important class of applications
of interest to ASCI [1, 2], analytical modeling of systems and applications of this scale is not always
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possible. Queuing models generally lead to very complex nonlinear equations whose solution is
intractable. For systems of ASCI-proposed size and complexity simulation remains the predictive
tool of choice, though simulation may be augmented by analytical and statistical analysis.

Three related targets for our simulation effort have been identified: simulation of ASCI-scale
parallel systems using a realistic ASCI workload, simulation of ASCI scale storage systems and
I/O, and simulation of the high-performance ASCI wide-area network. All of these aspects of
ASCI system design are equally important and tractable by the approach we propose. However,
given the scale of the effort required, we envision a staged approach to tackling these problems.

In conjunction with the other methodologies, the proposed simulation environment could be
used for

• exploration of hardware/architecture design space;

• exploration of algorithm/implementation space both at the application level (e.g. data distri-
bution and communication) and the system level (e.g. scheduling, routing, and load balanc-
ing);

• determining how application performance will scale with the number of processors or other
components;

• analysis of the tradeoffs between performance and cost;

• testing and validating analytical models of computation and communication such as LogGP
[3] and BSP [4].

A canon of the field of performance evaluation is that hardware and software performance are
inextricable—hardware performance is meaningful only in the context of applications—thus these
capabilities are not entirely independent.

2 Goals

The general goal is to design and implement a simulation framework for design and analysis of
extreme-scale parallel and distributed computing systems, and as an ongoing part of this process
to validate the accuracy of results characterized by any particular model. An intermediate goal is
to model (and validate the model of) the ASCI Q machine [5] with a realistic ASCI workload.

We take as given that it is not feasible to simulate an extreme scale machine and workload with
perfect fidelity; on the other hand in certain circumstances it may be desirable to simulate some
subset of such a machine with near-perfect fidelity. In any case the simulator itself should be able
to exploit a machine of arbitrary size. Once defined, representations of logical components (e.g.
processors or SMPs, network switches and interconnects, programs or workloads, etc.) should be
easily assembled into differing configurations. Portability is essential. In more detail, the simulation
system should

• be scalable to model systems comprising 10,000 processors or more;

• allow arbitrary sets of components to be represented with arbitrary degrees of fidelity, in
terms of both structure (e.g. comprising distinct subcomponents) and timing;

• allow arbitrary (meaningful) configuration of components;
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• allow description of the machine configuration to be as independent as possible from of the
descriptions of the components;

• be genuinely portable across platforms ranging from single-processor workstations to clusters
of SMPs;

• be able to interface to other distinct applications such as direct execution simulators and
visualization systems.

These requirements suggest factoring the simulator into three parts: component descriptions, config-
uration descriptions, and an underlying, reasonably generic, and reasonably light-weight simulation
system with which all porting issues are associated. An object-oriented approach facilitates these
goals.

It is clear that simulating systems of the size and complexity that we envision will require the
use of parallel simulation [6]. Furthermore, the parallel simulation substrate must support compo-
sition of simulations and be very efficient in its implementation. We concluded that a conservative
synchronization scheme would have the best chance of success for this application. The require-
ment of portability across a variety of platforms led us to a parallel simulation substrate that runs
on both shared memory and distributed memory machines. The Scalable Simulation Framework
(SSF) [7] and the implementation of this framework being developed at Dartmouth College, DaSSF
[8, 9], is our current choice.

3 Initial Prototype

To determine the suitability of DaSSF as a parallel simulation substrate a small prototype model
was built. The purpose was to allow us to become familiar with DaSSF and to gain experience in
constructing models. The prototype was to be a learning experience and feasibility study rather
than the basis for conducting a specific simulation study.

We used the results of the domain analysis to define a subset of components to implement in
the prototype. We chose not to model the processors and memory hierarchy of an SMP node in any
detail and instead to focus on modeling the interconnection network between nodes as a fat-tree
network with a circuit-switched routing protocol. For the workload, rather than model the message
traffic from any specific application, we chose to have each processor node emit messages with
exponentially distributed interarrival times. The message destination node is selected with uniform
probability, and the message size is exponentially distributed. The parameters for the distributions
are inputs to the simulation.

3.1 Requirements

Our requirements for the prototype were that it exercise all the essential components of DaSSF
and several of the DaSSF extensions to SSF. To investigate the scalability of DaSSF itself the
components of the prototype were to be such that they could could be easily configured into
arbitrarily large models. Since we were not conducting a real performance study, we were not
concerned with modeling our system components with high fidelity, but rather determining whether
DaSSF was an appropriate substrate for developing components with arbitrary levels of fidelity. A
small model that used all the features was desirable for rapid development. At the same time we
were also interested in the scaling properties of DaSSF since we will want to develop very large
models in the future. The data collection capabilities provided by DaSSF were another topic to be
investigated.
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Figure 1: Simplified UML (Unified Modeling Language) class diagram for the simulation prototype.

DaSSF is provided for several platforms and may be compiled with the native compilers or with
g++. We tested our model on a variety of platforms using native compilers and vendor-optimized
versions of MPI. We were also interested in the capability of integrating DaSSF with our own C++
classes as well as with standard components such as the Standard Template Library. The ease of
debugging simulations that use DaSSF was also to be evaluated.

3.2 Design

The DaSSF API provides five base classes that applications may subclass. The SSF Entity class
defines the entities in the simulation. The SSF Process class defines the behaviors that entities
possess. Entities are connected to each other via channels, an SSF OutChannel in the transmitting
entity and an SSF InChannel in the receiving entity. An SSF Event represents the information
that flows between entities across the channels. Parameterized properties of model components,
the number to be instantiated, and their connectivity are specified via an input file written in the
Domain Modeling Language (DML).

A simplified UML (Unified Modeling Language) diagram of our prototype model is shown in
Figure 1. The model contains three types of entities, representing the SMP node, the network
interface card (NIC), and the network switch.

The SMP node has an outgoing channel for sending messages to its NIC and an incoming
channel for receiving messages from its NIC. The NIC has a corresponding incoming channel for
receiving messages from its SMP node and an outgoing channel for sending messages to its SMP
node. Additionally, the NIC has an outgoing channel and an incoming channel that connect it to
its network switch. Each network switch has 8 incoming channels and 8 outgoing channels. At the
level nearest the NICs, 4 of the channels communicate with 4 NICs and 4 communicate with the
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next level in the fat tree. (An example of a fat-tree network is shown in Figure 2). Higher in the
fat tree communication involves only other switches. The route that a message takes through the
network is determined at the source and is the same for all packets in a message. The route may
be read and stored in a routing table or computed via a routing method.

The SMP node has two processes, TWorkloadSender for sending messages and TWorkloadReceiver
for receiving messages. The NIC has a routing algorithm which has three processes, TWorkloadListener
for receiving messages from the source SMP and buffering them if the NIC is busy, TNICSender for
splitting the message into packets and sending the packets to the network switch, and TNICReceiver
for receiving packets from the switch, reassembling the message and sending it to the destination
SMP. The network switch has a flow control algorithm which has one process, TCrossbarSwitch,
that receives packets on an incoming channel from a NIC or a another switch and forwards them
out the appropriate outgoing channel to the next switch or NIC as specified by the route that is
embedded in the packet.

We defined separate processes for the actions performed by the SMP node and NIC entities as
a way of modularizing the logic, to reflect the fact that a NIC may represent a significant process
running asynchronously with the SMP, and to allow for the possibility of multiple NICs per SMP.
However this necessitates the use of other mechanisms such as a semaphore or an internal channel to
allow processes belonging the same entity to communicate with each other. Rather than attaching
the processes for message and packet handling directly to the NIC, we interposed the abstract
TRoutingAlgorithm object and created a TCircuitAlgorithm class that contains the processes
which implement a circuit routing algorithm for packet delivery. This gives us the flexibility to
define other algorithms in the future and give new behavior to the NIC by simply selecting at
runtime a different algorithm to be constructed. Similar logic pervades the design of the switch
and its process.

Two types of events are defined, one for a message, and one for the packets in a message. Packets
are further subclassed into four types: the open circuit packet, the acknowledge circuit packet, the
close circuit packet, and the data packet. The precise behavior that occurs in the processes depends
upon the type of packet that arrives.

Our prototype employs the DaSSF-supplied random number generation module. We collect
traces of packet movement through the network using DaSSF’s data packing and dumping capa-
bility.

3.3 Implementation

The present implementation of our prototype simulator consists of approximately five thousand
lines of ANSI- and POSIX-compliant C++ that runs using MPI under the Linux, Solaris, and Irix
operating systems. We use DaSSF’s built-in user threads to avoid the operating-system overhead
associated with creating hundreds of native threads. We have executed the code on single processor
boxes, SMPs, and clusters of workstations on a LAN. Since the specifications of modelled compo-
nents and architectures are entirely independent of the host platform models may be developed
and executed on any convenient or appropriate host.

The data-collection facility in the implementation permits one to collect detailed information
concerning the history of each simulated message: its movement from the computational node to
the network interface card, the opening of a network circuit for its transmission, its packetization,
its acknowledgement, and the closing of its network circuit. The implementation has been tested to
verify correctness of time delays, probabilistic distributions, and synchronization behaviour. The
data-collection will also support our visualization capability, allowing users to view message traffic
in the simulated system.
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Figure 2: A simulation model with 64 computational nodes and 48 switches. Each rectangle represents a
8-port switch and each circle represents a computational node and its network interface card.

3.4 Results

We have constructed a variety of architecture models for testing the simulation and for measuring
its performance and scalability. The simplest models consist of computational nodes connected to
each other by a bus or via a pair of network interface cards; slightly more complex models contain
one or two network switches with eight computational nodes. These small models provide a testbed
for verifying that the timing delays in various parts of the simulation match those of the hardware
being simulated. They also supply a convenient platform for debugging and detailed tracing of the
simulation’s progress. Even a simulation of a small system executing for a short time can produce
a large amount of data if the history of each simulated entity, process, and event is recorded.

Our larger models contain 64, 128, . . . , up to 4096 computational nodes networked together in
a fat-tree topology. Figure 2 shows the layout of a 64-node system. A 4096-node system (similar in
size to a proposed ASCI Q machine architecture) uses these 64-node systems as building blocks—the
nodes of one such system are each replaced with a 64-node system. Having these more realistically-
sized models allows us to undertake meaningful studies of system performance and scaling—both
of the simulation system itself and of the architectures being simulated. Our current studies focus
on the behavior of the simulation system rather than the simulated architecture.

Figure 3 shows the results of a simulation of the 64-node, 48-switch architecture shown in
Figure 2, with a load of 100 MB/s of message traffic originating at each node. The diagram shows
that many of the messages reach their destination in the minimum possible time (based on network
connectivity and time delays), but that a significant fraction of the messages have additional delays
due to network congestion. The mean message size is 4 KB. The simulation is not realistic in the
sense that the network protocols do not correspond to those of any actual network hardware and
the workload is highly generalized. Nevertheless, the simulation does show typical characteristics
for a moderately-loaded system.

Based on our early simulation experiments, we expect to be able to simulate 4096-node clusters
using computing platforms such as the SGI Origin 2000; we predict peak memory usage to be
8 GB in our initial prototype. Table 1 shows some of the performance figures we have obtained
so far for a 64-node cluster. Note that performance degrades as the number of computational
nodes increases because the processing nodes are not performing computational work; essentially
only message passing is taking place. Future simulations involving the direct execution of actual
applications will have a high proportion of their CPU time spent on the workload representation,
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Figure 3: Example output data from a 64-node simulation where each node generates an average of 100
MB/s of message traffic on the network. The mean message size is 4 KB.
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Platform Computational Events Execution
Nodes (1/sec) Time (sec)

Linux, 733 MHz Pentium III 1 2020.2 178.1
2 689.9 521.6

Linux, 500 MHz Pentium III 4 494.3 728.0
8 379.9 947.3

Solaris, Sun SPARC Ultra 5 1 1105.1 325.6

Irix, Origin 2000 1 1298.3 277.2
4 1351.1 266.4
16 630.2 571.1

Table 1: Performance of the initial prototype simulating at 64-node architecture on a variety of computing
platforms.

and hence will exhibit more favorable scaling characteristics.

4 Future Directions

Our simulation effort will proceed along several tracks. Our primary future undertaking is the
enhancement of the basic architecture simulation framework. In parallel, we are developing capa-
bilities for the direct execution of application workload within our simulation and the visualization
of the simulation and its results. Finally, we plan to augment our simulation with analytic and sta-
tistical analyses of workload and of simulation output using both traditional and novel approaches.

4.1 Simulation Framework

Our iterative, component-based approach to developing an architecture simulation allows us flexi-
bility in choosing where to apply future effort. The initial prototype models an architecture at a
coarse level. Based on our analysis of this simulation and consultation with domain experts we can
determine the parts of the simulation where fidelity most profitably can be enhanced. Initial indi-
cations are that we need a relatively low fidelity representation of network switches and protocols,
but that higher fidelity is necessary for the workload and processor cache representations. We plan
to focus on developing a direct execution capability in the near future.

Our component-based development process will enable us to seamlessly compose hardware,
protocols, and workloads of varying fidelities into a single simulation. We have begun investigating
the possible use of hardware description languages to formally specify architectural configurations.
This will facilitate the quick assembly of architectures for case studies.

We are completing the evaluation of DaSSF for use as the underlying discrete-event-handling
substrate of the simulation framework. Depending upon the results of this study we may decide to
evaluate additional discrete-event systems. Our high-level software design will make it relatively
painless to substitute a different discrete-event system for DaSSF if necessary. Identifying high-
performance and scalable discrete-event handling mechanisms is critical for the project’s success.
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4.2 Direct Execution

The initial prototype uses randomly sized messages at random intervals to simulate the workload on
the SMP node. This was adequate for the purposes of the prototype but we recognize the need for
a much more accurate representation of workload for most simulations. We intend to experiment
with direct execution as a means of simulating real ASCI workloads.

In direct execution the application is executed on the same machine used to perform the sim-
ulation. The application is typically modified to call the simulator only for those operations that
differ between the host machine and the simulated machine. Using the host machine to directly
execute some instructions rather than simulating all instructions can result in considerably faster
execution with minimal loss of accuracy when the host and target have similar architectures.

Most ASCI applications of interest use MPI (Message-Passing Interface) for communication
between parallel processes. Our initial prototype could be augmented to directly execute the
computations occurring on a node and invoke the simulator when calls to the MPI library occur.
Timings for the directly executed statements can be obtained and added to the simulated time
maintained by the simulator as it tracks the passage of the MPI message through the interconnection
network. The coupling of direct execution with the DaSSF simulation substrate will be investigated
in the near term.

A second approach to direct simulation is to run the program once and obtain accurate timing
information between the blocks of interest. This method allows for faster simulation of the machine
because the simulation only needs to know the message size and time sent. The greatest disadvan-
tage of this method is that it does not account for cases where the time of message receipt affects
the behavior of the program [12].

4.3 Visualization

We are also pursuing visualization of these simulations. We will focus on both visualizing the
execution of the simulation and on visualizing the performance of the simulated system. Visualiza-
tion will also aid in debugging the simulation itself, in developing and evaluating the efficiency of
load balancing of the simulation entities, and in understanding synchronization between simulation
timelines. Visualizing the simulated system will allow users to understand how varying workload
or network architecture affects the overall performance of an advanced or novel architecture.

4.4 Statistical Characterization

The theoretical and computational issues involved in large-scale network modeling have direct
analogues in some of the most challenging and important problems in statistical physics. The com-
plicating features which appear in both contexts include multiple spatial and temporal scales, and
strongly correlated dynamics and stochasticity. As a result we shall bring to bear on problems aris-
ing in network performance modeling techniques originally developed and already highly successful
in the context of nonequilibrium statistical physics.

One such technique is a numerical Rayleigh-Ritz method [13]. This is a variational formulation
for the time dependence of the probability distribution functions of network variables. Whether
one uses a discrete event dynamical system or stochastic fluid level approach, the network variables
are described by a large system of nonlinear, coupled, stochastic equations. Due to the nonlinear
nature, these equations cannot be solved exactly and require that approximations be made. The
approximations which describe higher order statistics in terms of lower ones are known as a closure.
The Rayleigh-Ritz variational method then tests these statistical closure ideas using the exact
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dynamics (i.e., the original equations), but more cheaply and quite often under more extreme
circumstances than is feasible by direct numerical simulation.

Closure schemes can then be developed by using educated guesses for the system statistics.
These ‘guesses’ may be inspired from an analysis of the data using the visualization tool. As a result,
empirical data from actual networks and workloads may be exploited in a numerical calculation.
Additional statistical information can be calculated within the variational formulation, including
multi-time correlations, and the probability of large fluctuations in performance. Moreover, there
are internal consistency checks available which may be used as diagnostics to detect a priori faulty
predictions of the closures, potentially reducing the amount of time spent on inadequate models.

Using this methodology we will attempt to address several types of problems such as the prob-
ability of buffer overflow and likelihood of long-time performance averages. Moreover, we expect
that well chosen closures will lead to being able to answer these questions with greatly reduced
computational effort.
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